PERSONAL PROTECTIVE EQUIPMENT (PPE)
Dec 01, 2025



Personal Protective Equipment (PPE) is the frontline defense of every seafarer working onboard. It protects crew members from physical, chemical, and environmental hazards while ensuring safe and efficient operations. Each piece of PPE serves a specific purpose that collectively reduces risk, prevents injury, and promotes a safety-first mindset onboard.

1. Protective Helmet
Provides essential head protection against falling objects, impact, and accidental bumps in confined or elevated spaces. A mandatory requirement in all deck and engine operations.

2. Eye Wear (Safety Goggles)
Shields the eyes from dust, debris, chemicals, sparks, and flying particles. Crucial during maintenance, grinding, chipping, or chemical handling.

3. Earmuff / Hearing Protection
Reduces excessive noise levels from machinery, engines, and power tools. Helps prevent long-term hearing damage and fatigue.

4. Dust Mask (Respiratory Protection)
Protects the wearer from inhaling dust, fumes, mist, and harmful airborne particles commonly encountered during painting, sweeping, or chemical tasks.

5. Safety Overalls
Flame-retardant coveralls designed to protect the body from heat, sparks, oil splashes, and minor chemicals. High-visibility strips ensure the wearer remains easily seen.

6. Safety Gloves
Provides hand protection against abrasions, cuts, chemical contact, and heat. Different glove types may be used depending on the task.

7. Safety Harness
Critical for working aloft or in elevated areas. Prevents falls and secures the crew while working at height or over the side.

8. Safety Shoes
Steel-toe or composite-toe footwear that protects the feet from heavy impacts, sharp objects, slips, and electrical hazards. Designed for tough marine environments.

ADVERTISEMENT

RELATED EDUCATIONAL VIEW MORE...

MARPOL 73/78 CONVENTION: LATEST UPDATES

The International Convention for the Prevention of Pollution from Ships, 1973, as modified by the Protocol of 1978, more commonly referred to as MARPOL 73/78, is the primary international agreement developed by the International Maritime Organization to prevent pollution of the marine environment from ships. Adopted in response to growing concern over oil spills and vessel discharges in the 1970s, it has since evolved into a comprehensive framework that addresses multiple forms of ship-source pollution. Together with SOLAS, MARPOL is regarded as one of the twin pillars of international maritime law, protecting both human life and the natural environment. MARPOL applies to all ships, though its requirements vary depending on size, type, and operation. Compliance is ensured through certification by flag states, enforcement by port state control, and the application of special provisions for designated “special areas” and “emission control areas” where stricter rules apply. Over the years, the Convention has grown through six technical annexes, each dedicated to a specific category of pollution. These annexes are the foundation of MARPOL and remain central to its implementation. Annex I addresses the prevention of pollution by oil. It includes requirements for double-hulled oil tankers, oil discharge monitoring and control systems, oily water separators, and record books. It is one of the most detailed annexes, reflecting the seriousness of oil pollution incidents. Annex II concerns the control of pollution by noxious liquid substances carried in bulk. It establishes categories for chemicals, prewash procedures, and restrictions on discharges, requiring chemical tankers to operate under strict safety and environmental standards. Annex III regulates the prevention of pollution by harmful substances carried by sea in packaged form. It is closely linked to the International Maritime Dangerous Goods (IMDG) Code, ensuring labeling, packaging, and documentation are standardized. Annex IV covers the prevention of pollution by sewage from ships. It requires ships to install approved sewage treatment plants or holding systems and regulates discharges into the sea, particularly in designated sensitive areas. Annex V deals with the prevention of pollution by garbage from ships. It prohibits the discharge of plastics, restricts the disposal of other wastes, and requires vessels to maintain garbage management plans and record books. This annex has been strengthened repeatedly to reflect the global urgency of reducing marine litter. Annex VI addresses the prevention of air pollution from ships. It limits emissions of sulfur oxides (SOx) and nitrogen oxides (NOx), regulates fuel oil quality, prohibits ozone-depleting substances, and introduces greenhouse gas reduction measures such as the Energy Efficiency Design Index (EEDI), Ship Energy Efficiency Management Plan (SEEMP), and the Carbon Intensity Indicator (CII). It also establishes Emission Control Areas where more stringent standards apply. Recent amendments highlight MARPOL’s responsiveness to modern environmental challenges. In 2024, Annex I was updated to require improved oil discharge monitoring equipment, while Annex II introduced expanded prewash obligations in the Baltic and North Sea to reduce chemical residues. Annex IV tightened sewage effluent standards, and Annex V expanded garbage management requirements to smaller ships and reinforced prohibitions on plastics. Annex VI amendments in 2024 introduced stricter nitrogen oxide limits for new engines and strengthened rules for ships using alternative fuels, ensuring adequate fire protection and fuel distribution systems in parallel with the IGF Code. By 2025, MARPOL continues to advance global decarbonization and environmental protection objectives. Annex VI now mandates enhanced monitoring and verification of the Carbon Intensity Indicator, requiring ships to achieve satisfactory efficiency ratings or adopt corrective action plans. This step places greater responsibility on shipping companies to reduce operational emissions. Electronic record books for oil, garbage, and cargo handling operations are increasingly being accepted in place of paper logs, reflecting the shift toward digital compliance and reducing administrative burdens. New reporting obligations for lost containers at sea, coordinated with parallel SOLAS amendments, will also apply from 2026, ensuring faster notification to authorities and minimizing environmental and navigational hazards. Annex III, through updates aligned with the IMDG Code, further enhances labeling and documentation for harmful substances in packaged form. These updates underline MARPOL’s role as a living instrument that evolves in response to both long-standing pollution risks and emerging challenges such as climate change, marine litter, and the transition to alternative fuels. The integration of greenhouse gas measures under Annex VI,

JET CHISEL

A jet chisel (also called needle scaler) is a pneumatic tool made up of multiple thin steel rods (“needles”) that rapidly move back and forth when connected to compressed air. The vibration of the needles chips away rust, old paint, scale, and marine growth on metal surfaces. Think of it as “pangbaklas ng kalawang, pero industrial version.” Purpose: • Remove rust, corrosion, and scale from steel surfaces • Prepare metal before painting, welding, or coating • Clean areas where grinders and wire brushes can’t reach (corners, tight spots, edges) • Reduce manual scraping time and physical fatigue How to Use: 1. PPE First • Safety goggles / face shield • Ear protection (maingay ’yan) • Gloves • Mask (dust/rust particles) • Proper coverall 2. Check the Tool • Inspect air hose, connectors, and needles • Ensure air compressor pressure is within recommended range (usually 90 psi ± depending on tool) 3. Connect to Compressed Air • Attach hose firmly • Open the air valve gradually 4. Operate • Hold the tool with both hands • Press the needles gently against the surface — do not push too hard • Let the vibration do the work • Work in steady strokes 5. After Use • Shut off air supply • Clean and oil the needles to prevent rust • Store in dry location

Lathe Machine

LATHE MACHINE; THE MOTHER OF ALL MACHINES A lathe machine is a powerful tool in both industrial and maritime workshops. By rotating a workpiece against a cutting tool, it enables precise shaping, drilling, and finishing of materials. This makes it vital for manufacturing components such as shafts, propeller parts, and other cylindrical items that require high accuracy. How a Lathe Machine Works At its core, a lathe machine consists of a headstock, tailstock, bed, and carriage. The headstock houses the spindle and speed controls, delivering rotational motion to the workpiece. The tailstock provides support and can hold auxiliary tools like drills or reamers. The bed acts as a rigid base, ensuring that all other components remain aligned. Mounted on the bed, the carriage including the saddle, cross-slide, and tool post movably carries the cutting tool, while the lead screw and feed rod drive the tool’s motion for threading and feeding. Operations You Can Do on a Lathe Lathes are extremely versatile. Here are some of the most common operations: Turning: Reducing the diameter of a workpiece to form cylinders or tapered shapes. Facing: Creating flat surfaces on the ends of the piece. Parting: Cutting off a portion of the workpiece. Boring: Enlarging existing holes or providing a precise internal diameter. Thread Cutting: Cutting internal or external screw threads. Knurling: Forming patterned grips on handles or tool surfaces. Drilling: Using a drill held in the tailstock to bore holes with high accuracy.

Chain Block

What is a chain block A chain block, also known as a manual chain hoist, is a mechanical lifting device widely used in maritime, shipyard, construction, and industrial environments. The image illustrates the key internal and external components of a chain block, including the steel frame, gear casing, load chain, braking system, hooks, and internal bearings. These parts work together to lift, lower, and hold heavy loads safely using manual force. The robust steel frame houses the internal gears and brake mechanism, while the upper hook allows secure attachment to a beam or lifting point. The load chain passes through the chain guide, ensuring smooth movement and proper alignment during operation. Inside the gear casing, bushings, bearings, and gears reduce friction and multiply force, enabling efficient lifting. Purpose The primary purpose of a chain block is to lift, suspend, and precisely position heavy loads in areas where electrical or hydraulic lifting equipment may be unavailable or impractical. In maritime operations, chain blocks are commonly used for engine maintenance, cargo handling, machinery installation, and ship repair work. The integrated mechanical load brake and pawl-and-ratchet mechanism are critical safety features. They automatically hold the load in place when lifting force is released, preventing accidental lowering and ensuring controlled, step-by-step operation. This makes chain blocks especially suitable for confined spaces and onboard ship environments.

MARINO PH - The largest maritime community.
9_20250904_175149_0008.png
10_20250904_175149_0009.png
12_20250904_175150_0011.png
19_20250904_175150_0018.png
20_20250904_175150_0019.png
23_20250904_175150_0022.png
26_20250904_175150_0025.png
32_20250904_175150_0031.png
5_20250904_175149_0004.png
6_20250904_175149_0005.png
8_20250904_175149_0007.png
11_20250904_175149_0010.png
13_20250904_175150_0012.png
14_20250904_175150_0013.png
15_20250904_175150_0014.png
16_20250904_175150_0015.png
17_20250904_175150_0016.png
18_20250904_175150_0017.png
21_20250904_175150_0020.png
22_20250904_175150_0021.png
24_20250904_175150_0023.png
25_20250904_175150_0024.png
27_20250904_175150_0026.png
28_20250904_175150_0027.png
29_20250904_175150_0028.png
30_20250904_175150_0029.png
31_20250904_175150_0030.png
33_20250904_175150_0032.png

Marino PH Logo

MARINO PH

The largest maritime community in the Philippines
© 2025 All Rights Reserved.


CONTACT INFORMATION

+63 (02) 8743 5810
customercare@marinoph.com
Agoncillo Building, 1580 Taft Ave, Ermita, Manila City, 1000 Metro Manila