UNDERSTANDING ABOUT ISPS CODE
Sep 17, 2025



Introduction
The International Ship and Port Facility Security (ISPS) Code is a comprehensive set of measures designed to enhance the security of ships and port facilities. It was adopted by the International Maritime Organization (IMO) under the framework of the International Convention for the Safety of Life at Sea (SOLAS), specifically through an amendment introduced in December 2002. The ISPS Code officially came into force on 1 July 2004, marking a turning point in maritime safety and global security.

Purpose of the ISPS Code
-The ISPS Code aims to establish an international framework to detect, assess, and respond to security threats in the maritime industry. Its main objectives include:

-Defining roles and responsibilities for governments, shipping companies, port authorities, and other stakeholders.

-Establishing standardized measures to prevent acts of terrorism, piracy, smuggling, or sabotage.

-Enhancing cooperation between port states and flag states to ensure unified maritime security.

-Ensuring that ships and port facilities are prepared to respond to security incidents.

Structure of the ISPS Code
The ISPS Code consists of two parts:

-Part A (Mandatory): Contains detailed security requirements for governments, shipping companies, shipboard personnel, and port facility operators.

-Part B (Guidance): Provides recommendations and best practices to help stakeholders effectively implement Part A requirements.

Advertisement

Key Requirements

1.Ship Security Assessment (SSA): A thorough analysis of potential threats and vulnerabilities on board vessels.
2.Ship Security Plan (SSP): A documented plan tailored to each ship, addressing preventive measures, emergency procedures, and security responsibilities.
3.Ship Security Officer (SSO): A designated officer responsible for maintaining the SSP and training crew on security duties.
4.Port Facility Security Assessment (PFSA): Identification of potential risks at port facilities.
5.Port Facility Security Plan (PFSP): Development of procedures to control access, monitor activities, and respond to incidents.
6.Security Levels: Ships and ports must operate under three defined security levels:

Level 1: Normal operations (minimum security measures).

Level 2: Heightened threat (increased protective measures).

Level 3: Exceptional threat (specific protective measures applied).

Implementation and Impact
The ISPS Code has significantly improved global maritime security by ensuring that ships and ports follow standardized security procedures. It compels shipping companies and port facilities to remain vigilant, coordinate with authorities, and maintain continuous training and drills. Furthermore, it has reduced vulnerabilities to piracy, terrorism, and illegal activities across international waters.

The ISPS Code remains a cornerstone of modern maritime safety and security. By fostering international collaboration and requiring strict security measures, it helps safeguard not only ships and port facilities but also the global supply chain that depends on safe and efficient maritime transport. For seafarers, port authorities, and shipping companies, compliance with the ISPS Code is not merely a legal requirement—it is an essential duty in protecting lives, property, and the marine environment.

RELATED EDUCATIONAL VIEW MORE...

SOLAS CONVENTION: LATEST UPDATES

The International Convention for the Safety of Life at Sea (SOLAS) is recognized as the cornerstone of international maritime safety law. Originally adopted in 1914 following the tragic loss of the RMS Titanic, it has since been revised several times to keep pace with technological and operational advances in shipping. The 1974 SOLAS Convention, which came into force in 1980, introduced the “tacit acceptance” procedure, allowing amendments to automatically enter into force on a specified date unless objected to by a certain number of member states. This system ensures SOLAS remains a dynamic, living instrument capable of adapting quickly to new safety concerns. SOLAS establishes uniform minimum safety standards in the design, construction, equipment, and operation of merchant ships. All ships engaged in international voyages must comply, subject to inspections and certification by their flag state administrations, as well as verification by port state control officers when calling at foreign ports. The Convention also incorporates mandatory codes such as the ISM Code, ISPS Code, Polar Code, and HSC Code, ensuring comprehensive safety measures. The treaty has grown into a holistic framework addressing every aspect of ship safety, including fire prevention, life-saving appliances, safe navigation, carriage of cargoes, maritime security, and the safe management of shipping companies. Its reach extends from traditional merchant vessels to modern high-speed craft, bulk carriers, and ships operating in polar waters. The most updated structure of the SOLAS Convention includes the following chapters: Chapter I – General Provisions: Survey, certification, and enforcement. Chapter II-1 – Construction – Structure, Subdivision, and Stability, Machinery and Electrical Installations: Integrity of ship structure and machinery. Chapter II-2 – Fire Protection, Fire Detection, and Fire Extinction: Fire safety systems, training, and response. Chapter III – Life-Saving Appliances and Arrangements: Lifeboats, life rafts, survival suits, and muster arrangements. Chapter IV – Radiocommunications: GMDSS and distress alert systems. Chapter V – Safety of Navigation: Voyage planning, navigational warnings, and mandatory equipment like ECDIS and AIS. Chapter VI – Carriage of Cargoes: Loading, stowage, and securing of general cargoes. Chapter VII – Carriage of Dangerous Goods: IMDG Code compliance and hazardous cargo provisions. Chapter VIII – Nuclear Ships: Special safety arrangements for nuclear-powered ships. Chapter IX – Management for the Safe Operation of Ships (ISM Code): Safety management systems and company responsibility. Chapter X – Safety Measures for High-Speed Craft (HSC Code): Special rules for fast passenger and cargo craft. Chapter XI-1 – Special Measures to Enhance Maritime Safety: Continuous surveys, ship identification numbers, and inspection regimes. Chapter XI-2 – Special Measures to Enhance Maritime Security (ISPS Code): Ship and port facility security levels, drills, and plans. Chapter XII – Additional Safety Measures for Bulk Carriers: Structural reinforcements and safety precautions. Chapter XIII – Verification of Compliance: IMO audits of member states’ compliance. Chapter XIV – Safety Measures for Ships Operating in Polar Waters (Polar Code): Safety, environmental, and crew training standards in polar regions. Chapter XV – Safety Measures for Ships Carrying Industrial Personnel: Safe design and operation of vessels carrying offshore or industrial workers. Chapter XVI – Safety Measures for the Carriage of More than 12 Industrial Personnel on International Voyages: Latest addition, providing detailed regulations for industrial transport. In 2024, several significant amendments entered into force, further strengthening the safety framework. Updates to Chapter II-1 on construction and stability enhanced watertight integrity and introduced refined methods for damage stability calculations. These improvements, particularly in Parts B-1, B-2, and B-4, applied to new vessels and modernized long-standing requirements. Fire safety also received attention, with amendments to the Fire Safety Systems (FSS) Code easing requirements for individual detector isolators, balancing safety with practical shipboard application. Changes to the Life-Saving Appliances (LSA) Code clarified standards for launching appliances, including rescue boats and free-fall lifeboats, while providing exemptions from certain dynamic testing requirements. At the same time, the International Code of Safety for Ships using Gases or Other Low-flashpoint Fuels (IGF Code) was updated, reinforcing provisions on fire protection, fuel distribution, and fixed extinguishing arrangements. These changes ensured that ships using LNG and other alternative fuels maintained higher safety margins. Other 2024 amendments addressed mooring equipment, requiring de

Maritime Zones Explained: The Boundaries of Our Seas

The concept of maritime zones is a cornerstone of international maritime law, defined primarily by the United Nations Convention on the Law of the Sea (UNCLOS). These zones determine the extent of a coastal state’s rights, responsibilities, and jurisdiction over the waters and resources adjacent to its shores. Background • Maritime zones were established to resolve disputes over navigation, resource ownership, and national security. • Boundaries are measured from a country’s baseline (usually the low-water mark along the coast). • The key zones include: • Internal Waters – full sovereignty like land territory. • Territorial Sea – up to 12 nautical miles. • Contiguous Zone – up to 24 nautical miles. • Exclusive Economic Zone (EEZ) – up to 200 nautical miles. • Continental Shelf – may extend beyond 200 nautical miles depending on natural features. Purpose • Internal Waters – treated like land territory, full state control. • Territorial Sea (12 nm) – authority over navigation, resources, and law enforcement. • Contiguous Zone (24 nm) – enforcement against smuggling, illegal entry, and security threats. • Exclusive Economic Zone (200 nm) – exclusive rights to explore and exploit resources (fish, oil, gas). • Continental Shelf – rights over seabed resources even beyond EEZ. Importance • Safeguards national security and territorial sovereignty. • Ensures sustainable use of marine resources (fisheries, oil, gas). • Provides control over shipping routes and trade lifelines. • Strengthens sovereignty in disputed waters (vital for nations like the Philippines). • Globally, reduces conflict, promotes order and cooperation, and protects the marine environment.

EMERGENCY GENERATOR

Ship Emergency Generator: Essential Safety Power at Sea On board a ship, electricity powers almost every operation from navigation and communication systems to lighting, pumps, and emergency alarms. When the main power supply fails, the safety of the vessel, its crew, and cargo relies on a reliable backup source. This is where the ship’s emergency generator becomes indispensable. Mandated by the International Convention for the Safety of Life at Sea (SOLAS), the emergency generator is a critical piece of equipment designed to supply electrical power to essential systems during emergencies. Background and Purpose The emergency generator serves as the ship’s lifeline during power loss or blackout. It automatically starts and transfers load to an emergency switchboard to ensure that key systems remain operational. Its purpose is not to run the entire ship but to sustain safety and emergency functions until the main power supply can be restored or the ship is brought to safety. The generator powers essential equipment such as emergency lighting in accommodation spaces, machinery areas, lifeboat embarkation points, and escape routes. It also supplies energy to fire detection and alarm systems, communication equipment, navigation instruments like radar and GPS, and in some cases, the steering gear. Pumps for fire-fighting and bilge operations, as well as emergency batteries and chargers, also depend on this backup system. Location and Construction To maximize reliability, the emergency generator is installed in a separate compartment from the main engine room—typically on an upper deck with its own ventilation, fire protection, and access. This arrangement prevents the generator from being compromised by incidents in the engine room. Most are diesel-driven alternators chosen for their rapid start-up capability and rugged design. They have independent fuel tanks, cooling systems, and starting mechanisms to ensure operation even if the main systems fail.

MARINE MAIN ENGINE

Marine Main Engine The marine main engine is the heart of a ship’s propulsion system. It is the largest and most powerful machine on board, designed to convert fuel into mechanical energy that turns the propeller and drives the vessel forward. Without it, modern shipping—responsible for carrying around 90% of the world’s trade—would not be possible. Understanding the main engine is essential for students, seafarers, and anyone interested in marine engineering. Meaning and Purpose The main engine refers to the primary source of propulsion power in a ship. Its purpose is straightforward yet vital: to provide continuous, reliable thrust to move the vessel safely across oceans. Unlike auxiliary engines, which generate electrical power for onboard systems, the main engine directly powers the propeller shaft. This distinction highlights its role as the core machinery that ensures a ship’s mobility and operational efficiency. Background Marine engines have evolved significantly since the early days of steam propulsion. In the 19th century, ships relied on coal-fired steam engines. Over time, these were replaced by more efficient internal combustion engines. Today, the most common propulsion system in large commercial vessels is the two-stroke low-speed diesel engine, valued for its efficiency, durability, and ability to burn heavy fuel oil. However, with increasing environmental regulations, new technologies and alternative fuels are reshaping the future of marine propulsion.

MARINO PH - The largest maritime community.
9_20250904_175149_0008.png
10_20250904_175149_0009.png
12_20250904_175150_0011.png
19_20250904_175150_0018.png
20_20250904_175150_0019.png
23_20250904_175150_0022.png
26_20250904_175150_0025.png
32_20250904_175150_0031.png
5_20250904_175149_0004.png
6_20250904_175149_0005.png
8_20250904_175149_0007.png
11_20250904_175149_0010.png
13_20250904_175150_0012.png
14_20250904_175150_0013.png
15_20250904_175150_0014.png
16_20250904_175150_0015.png
17_20250904_175150_0016.png
18_20250904_175150_0017.png
21_20250904_175150_0020.png
22_20250904_175150_0021.png
24_20250904_175150_0023.png
25_20250904_175150_0024.png
27_20250904_175150_0026.png
28_20250904_175150_0027.png
29_20250904_175150_0028.png
30_20250904_175150_0029.png
31_20250904_175150_0030.png
33_20250904_175150_0032.png

Marino PH Logo

MARINO PH

The largest maritime community in the Philippines
© 2025 All Rights Reserved.


CONTACT INFORMATION

+63 (02) 8743 5810
customercare@marinoph.com
Agoncillo Building, 1580 Taft Ave, Ermita, Manila City, 1000 Metro Manila