SECURITY LEVELS: ISPS CODE
Sep 07, 2025



The International Ship and Port Facility Security (ISPS) Code is a comprehensive set of measures adopted by the International Maritime Organization (IMO) under the Safety of Life at Sea (SOLAS) Convention. Established in response to heightened concerns about maritime terrorism and unlawful acts after the September 11, 2001 attacks, the ISPS Code entered into force on July 1, 2004. Its primary objective is to enhance the security of ships and port facilities by establishing a standardized, consistent framework that enables governments, shipping companies, port authorities, and other stakeholders to collaborate in identifying and addressing threats to maritime security.

The ISPS Code is divided into two main parts. Part A is mandatory and lays down detailed requirements for governments, shipowners, and port facilities to follow. Part B contains recommended guidelines that provide flexibility in implementation but are not legally binding. Together, these parts form a comprehensive approach to maritime security, balancing strict compliance with adaptable measures tailored to specific risks and operational environments. Since its inception, the ISPS Code has been continuously updated to address evolving threats, including cyber risks, piracy, and organized crime affecting global trade routes.

The Code applies to ships engaged in international voyages, including passenger ships, cargo ships of 500 gross tonnage and above, mobile offshore drilling units, and port facilities serving such ships. Each ship must have an approved Ship Security Plan (SSP) and designate a Ship Security Officer (SSO). Similarly, each port facility must maintain a Port Facility Security Plan (PFSP) and appoint a Port Facility Security Officer (PFSO). These officers are responsible for ensuring that security measures are implemented, drills and exercises are conducted, and compliance is maintained under the oversight of the Designated Authority from the flag or port state.

A crucial feature of the ISPS Code is the establishment of three security levels, which provide a flexible and responsive framework to adapt to varying threat environments. Security Level 1 represents the normal condition, where minimum security measures must be maintained at all times. Security Level 2 is applied when there is an increased risk of a security incident, requiring additional protective measures. Security Level 3 represents the highest alert level, where a probable or imminent security threat exists, and extraordinary measures must be implemented to safeguard ships and port facilities.

These security levels are set by the Contracting Governments and communicated to ships and port facilities. Ships are required to comply with the security level set by the administration of the port state they are visiting. This ensures that all parties are synchronized in their efforts, minimizing the likelihood of confusion or lapses during periods of heightened alert. The dynamic application of security levels demonstrates the adaptability of the ISPS Code to different threat scenarios, from routine operations to emergency conditions.

Another critical element of the ISPS Code is the use of security assessments and plans. A Ship Security Assessment (SSA) identifies potential vulnerabilities, while the Ship Security Plan outlines the preventive, protective, and response measures to address them. Likewise, Port Facility Security Assessments (PFSA) and Plans detail site-specific risks and countermeasures. Both ships and port facilities undergo audits and verifications to ensure that these plans remain effective and updated, considering new threats such as cyberattacks targeting navigation and cargo systems.

The ISPS Code also emphasizes international cooperation and information exchange. Contracting Governments are encouraged to share intelligence regarding potential threats, suspicious activities, and lessons learned from incidents. This collaborative approach enhances global maritime security, ensuring that vulnerabilities in one region do not compromise the safety of the wider international shipping community. The Code highlights that maritime security is not only a national concern but a shared global responsibility.

Training and drills form an essential part of the Code’s framework. Crew members, ship officers, and port facility staff must undergo regular security training to familiarize themselves with procedures for access control, cargo inspections, restricted area monitoring, and emergency responses. Periodic drills test the readiness of personnel and the effectiveness of the security systems in place. These practices ensure that in times of real threats, the response is swift, coordinated, and efficient.

Over time, the ISPS Code has expanded its scope to address emerging challenges. The increasing reliance on digital technologies in maritime operations has introduced new risks, particularly in the form of cyber threats. Recognizing this, the

RELATED EDUCATIONAL VIEW MORE...

MARPOL 73/78 CONVENTION: LATEST UPDATES

The International Convention for the Prevention of Pollution from Ships, 1973, as modified by the Protocol of 1978, more commonly referred to as MARPOL 73/78, is the primary international agreement developed by the International Maritime Organization to prevent pollution of the marine environment from ships. Adopted in response to growing concern over oil spills and vessel discharges in the 1970s, it has since evolved into a comprehensive framework that addresses multiple forms of ship-source pollution. Together with SOLAS, MARPOL is regarded as one of the twin pillars of international maritime law, protecting both human life and the natural environment. MARPOL applies to all ships, though its requirements vary depending on size, type, and operation. Compliance is ensured through certification by flag states, enforcement by port state control, and the application of special provisions for designated “special areas” and “emission control areas” where stricter rules apply. Over the years, the Convention has grown through six technical annexes, each dedicated to a specific category of pollution. These annexes are the foundation of MARPOL and remain central to its implementation. Annex I addresses the prevention of pollution by oil. It includes requirements for double-hulled oil tankers, oil discharge monitoring and control systems, oily water separators, and record books. It is one of the most detailed annexes, reflecting the seriousness of oil pollution incidents. Annex II concerns the control of pollution by noxious liquid substances carried in bulk. It establishes categories for chemicals, prewash procedures, and restrictions on discharges, requiring chemical tankers to operate under strict safety and environmental standards. Annex III regulates the prevention of pollution by harmful substances carried by sea in packaged form. It is closely linked to the International Maritime Dangerous Goods (IMDG) Code, ensuring labeling, packaging, and documentation are standardized. Annex IV covers the prevention of pollution by sewage from ships. It requires ships to install approved sewage treatment plants or holding systems and regulates discharges into the sea, particularly in designated sensitive areas. Annex V deals with the prevention of pollution by garbage from ships. It prohibits the discharge of plastics, restricts the disposal of other wastes, and requires vessels to maintain garbage management plans and record books. This annex has been strengthened repeatedly to reflect the global urgency of reducing marine litter. Annex VI addresses the prevention of air pollution from ships. It limits emissions of sulfur oxides (SOx) and nitrogen oxides (NOx), regulates fuel oil quality, prohibits ozone-depleting substances, and introduces greenhouse gas reduction measures such as the Energy Efficiency Design Index (EEDI), Ship Energy Efficiency Management Plan (SEEMP), and the Carbon Intensity Indicator (CII). It also establishes Emission Control Areas where more stringent standards apply. Recent amendments highlight MARPOL’s responsiveness to modern environmental challenges. In 2024, Annex I was updated to require improved oil discharge monitoring equipment, while Annex II introduced expanded prewash obligations in the Baltic and North Sea to reduce chemical residues. Annex IV tightened sewage effluent standards, and Annex V expanded garbage management requirements to smaller ships and reinforced prohibitions on plastics. Annex VI amendments in 2024 introduced stricter nitrogen oxide limits for new engines and strengthened rules for ships using alternative fuels, ensuring adequate fire protection and fuel distribution systems in parallel with the IGF Code. By 2025, MARPOL continues to advance global decarbonization and environmental protection objectives. Annex VI now mandates enhanced monitoring and verification of the Carbon Intensity Indicator, requiring ships to achieve satisfactory efficiency ratings or adopt corrective action plans. This step places greater responsibility on shipping companies to reduce operational emissions. Electronic record books for oil, garbage, and cargo handling operations are increasingly being accepted in place of paper logs, reflecting the shift toward digital compliance and reducing administrative burdens. New reporting obligations for lost containers at sea, coordinated with parallel SOLAS amendments, will also apply from 2026, ensuring faster notification to authorities and minimizing environmental and navigational hazards. Annex III, through updates aligned with the IMDG Code, further enhances labeling and documentation for harmful substances in packaged form. These updates underline MARPOL’s role as a living instrument that evolves in response to both long-standing pollution risks and emerging challenges such as climate change, marine litter, and the transition to alternative fuels. The integration of greenhouse gas measures under Annex VI,

Understanding Echo Sounder

An echo sounder is an essential marine instrument that measures the depth of water beneath a vessel by utilizing sound waves. It operates on the principle of sonar (Sound Navigation and Ranging), where sound pulses are emitted into the water and their echoes are analyzed upon return. This technology has been a cornerstone in maritime navigation and research for decades . Operational Mechanism The echo sounder system comprises several key components that work in a sequence: 1. Display Unit: Serves as the interface for the operator, showing real-time data and system status. 2. Pulse Generator: Generates electrical signals that define the characteristics of the sound pulses. 3. Transmitter: Amplifies the electrical signals and sends them to the transducer. 4. Transducer: Converts electrical signals into sound waves and emits them into the water. 5. Propagation Medium (Water): The sound waves travel through the water column until they encounter an object or the seabed. 6. Echo Reception: Reflected sound waves (echoes) return to the transducer, which converts them back into electrical signals.  7. Receiver and Amplifier: Processes and strengthens the returned signals for analysis.  8. Display Unit: Presents the processed data, indicating depth readings and potential underwater objects. The time interval between the emission of the sound pulse and the reception of its echo is used to calculate the distance to the reflecting object, typically the seabed. This calculation considers the speed of sound in water, which averages around 1,500 meters per second . Importance of Echo Sounders Echo sounders play a pivotal role in various maritime activities: • Navigation Safety: By providing accurate depth measurements, they help prevent groundings and collisions with submerged hazards. • Fishing Industry: Aid in locating fish schools and understanding seabed topography, enhancing fishing efficiency. • Hydrographic Surveys: Essential for mapping the seafloor, which is crucial for charting and marine construction projects. • Scientific Research: Utilized in oceanography for studying underwater geological formations and marine life distributions. • Submarine and Military Operations: Assist in underwater navigation and detecting other vessels or obstacles. Echo sounders have evolved significantly, with modern systems offering high-resolution imaging and integration with other navigational tools. Their ability to provide real-time, accurate underwater information makes them indispensable in the maritime domain.

Understanding Mooring Winch

A winch is a mechanical device with a rotating drum used to pull, lift, or control heavy loads using wire rope, cable, or synthetic line. It provides controlled movement of equipment, lines, and cargo on deck. Purpose of a Winch ‣Heave in or slack out mooring lines safely ‣Lift or move heavy objects with controlled tension ‣Assist in towing, anchoring, and cargo operations I‣mprove safety and efficiency during deck tasks

Deck Officer

Who is a Deck Officer? A Deck Officer is a licensed seafarer responsible for the safe navigation, cargo operations, crew supervision, and overall safety of the ship. They work under the Captain (Master) and are essential for the smooth operation of the vessel at sea and in port. Responsibilities & Duty Schedule Captain ‣Overall command of the ship, crew, and cargo ‣Ensures compliance with maritime laws & safety regulations ‣Decision-maker during navigation, emergencies, and port operations ‣Represents the ship to port authorities & company Chief Officer ‣Manages deck crew & cargo operations ‣Responsible for ship’s stability, loading, and ballasting ‣Supervises safety drills & emergency preparedness ‣Ensure safe navigation and safety at all times. TIME: 04:00 – 08:00 → (Morning Watch) 16:00 – 20:00 → (Evening Watch)

MARINO PH - The largest maritime community.
9_20250904_175149_0008.png
10_20250904_175149_0009.png
12_20250904_175150_0011.png
19_20250904_175150_0018.png
20_20250904_175150_0019.png
23_20250904_175150_0022.png
26_20250904_175150_0025.png
32_20250904_175150_0031.png
5_20250904_175149_0004.png
6_20250904_175149_0005.png
8_20250904_175149_0007.png
11_20250904_175149_0010.png
13_20250904_175150_0012.png
14_20250904_175150_0013.png
15_20250904_175150_0014.png
16_20250904_175150_0015.png
17_20250904_175150_0016.png
18_20250904_175150_0017.png
21_20250904_175150_0020.png
22_20250904_175150_0021.png
24_20250904_175150_0023.png
25_20250904_175150_0024.png
27_20250904_175150_0026.png
28_20250904_175150_0027.png
29_20250904_175150_0028.png
30_20250904_175150_0029.png
31_20250904_175150_0030.png
33_20250904_175150_0032.png

Marino PH Logo

MARINO PH

The largest maritime community in the Philippines
© 2025 All Rights Reserved.


CONTACT INFORMATION

+63 (02) 8743 5810
customercare@marinoph.com
Agoncillo Building, 1580 Taft Ave, Ermita, Manila City, 1000 Metro Manila